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Abstract: Hitherto unknown tricyclo[4.2.1.03'S]nonan-5-one (2) was prepared by 

reductive cleavage of tetracyclo[3.3.1.02"s.03'7]nonan-9-une (1) with lithium in liquid 

ammonia or reducting 1 via photochemically induced electron transfer. Tricyclic 

ketone 2 served as precursor for the synthesis of two novel hydrocarbons, i. e. 

tricyclo[4.2.1.03"S]nonane (3) and tricyclo[4.2.1.03"S]non-4-ene (5). 

© 1997 Elsevier Science Ltd. 

Cyclopropyl ketones undergo cleavage of the cyclopropane ring when reduced with lithium m liquid 

ammonia.~ It has been found that the reaction is controlled by the overall steric configuration of the 

molecule, i. e. the cyclopropane ring C-C bond which better overlaps the n-bond of the adjacent unsaturated 

center is the bond which is preferentially cleaved reductively, geductive cleavage of cyclopropyl ketones by 

samarium(H) iodide, 2 and by photochemically induced electron transfer 3 has been reported recently as well. 

As part of  our continuing interest in the synthesis and chemistry of polycyclic molecules, 4"5 with the 

above concept in mind, single electron transfer induced ring opening reactions of  cyclopropyl ketone 1 were 

employed to obtain hitherto unknown tricyclo[4.2.1.0s'S]nonan-5-one (2). Tricyclic ketone 2 served as 

precursor for the synthesis of  two novel hydrocarbons 3 and 5, (Schemes I and H). 

The synthesis of tetracyclo[3.3.1.0e's.03"7]nonan-9-one (1) is readily performed by starting with 

4-brenden-2-one, 4 which could be converted photochemically into 1 in 25% isolated yield. 5 
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a) Li]NH3 or hv/EtsN/LiC104/CH3CN 
b) H2NNH2/KOH/diethylene flycol 

Subsequent t~eatment of  1 with Li/N]-I3 produced a single ketone (26% yield) to which we have 

assigned the structure tricyclo[4.2.1.03"S]non-5-one (2). However, irradiation of ketone 1 at 254 nm in 

CH3CN in the presence of LiCIO4 (1 equivalent) and Et3N (10 equivalents) afforded tricyclic ketone 2 in 

56% of yield. Wolf-Ki~6er reduction of ketone 2 gave tricyclo[4.2.1.03'S]nonane (3, 53%) which belongs 

to the family ofnoradamantane isomers of  the formula C9I-I14. 

Tricydic ketone 2 also served as a precursor for the preparation of tricyclo[4.2.1.03'S]nonane 

derivatives, 6 e. g., tricydo[4.2.1.03"S]nonan-5-ol (4) and tricyclo[4.2.1.03'S]non-4-ene (5) (Scheme H). 

S c h e m e  II 
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a) LiAIH4/diethyl ether 
b) HMPA, 230 °C 

° H  
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endo-4 and exo..4 5 
(92 : 8) 
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In order to prepare 4 and 5, tricyclic ketone 2 was first reduced with LiA1H4 to give 70% yield of 4 as a 

mixture of  endo- and exo- stereoisomers (product ratio 92:8). 7 Subsequent dehydratafion of 4 with HMPA 

at 230 °C afforded 5 as the sole product, s 

In snmmalT, the synthetic approach described above provides a straightforward entry into the 

Uicyclo[4.2.1.03"S]nonane skeleton and various derivatives. We are continuing to explore the chemistry of 1 

and related derivatives. Further studies on the interconversion of 1 to the tricyclo[4.2.1.03'S]nonane skeleton 

are in progress. 
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(a) Spectroscopic data for 2: IR (KBr): v = 2940 em "~ (s), 2850 (m), 1720 (s, C=O); 1H NMR (CDCI3): 

1.07 (m, 1 H), 1.56 (ddd, J = 12.9, 4.2, 4.2 Hz, 1 I-I), 1.69 (d, ,1= 13.2 Hz, 1 H), 1.92-1.98 (m, 2 H), 

2.18 (d, J = 17.0 Hz, 1 H), 2.47 (ddd, J = 17.0, 5.0, 2.4 Hz, 1 H), 2.53-2.69 (m, 3 H), 2.87 (m, 1 H), 

3.11 (In, 1 H). '3C NMR (CDCI3) 6 = 26.8 (d), 30.7 (t), 33.4 (t), 34.7 (d), 36.5 (d), 38.1 (t), 40.4 (t), 

52.4 (d), 217.2 (s). 

(b) Spectroscopic data for 3: tH NMR (CDCI3) 6 = 1.10 (ddd, J = 12.1, 4.8, 4.8 Hz, 1 I-I), 1.20-1.32 (m, 

3 H), 1.45-1.77 (m, 4 H), 1.97 (m, 1 H), 2.25 (ddd, J = 9.8, 5.3, 5.3 Hz, 1 H), 2.33-2.45 (m, 2 H), 

2.55 (m, 1 H), 2.72 (m, 1 H). 13C NMR (CDCI3) 6 = 20.9 (t), 27,5 (t), 30.5 (t), 31.0 (t), 31.5 (d), 34.2 

(d), 35.0 (d), 37.8 (d), 41.6 (t). 

(c) Spectroscopic data for mixture ofendo-4 and exo-4: 'H NMR (CDCI3) 8 = 1.20-1.55 (m), 1.82-1.92 

(m), 1.98 (d, J =  13.5 Hz), 2.16-2.20 (m), 2.35-2.47 (m), 2.50-2.60 (m), 2.71-2.77 (m), 4.06 (dd, J = 

8.1, 7.9 Hz, H-COH of exo-4), 4.38 (dd, J = 7.6, 7.6 Hz, H-COH of endo-4). 13C NMR of endo-4 

(CDCI3) 8 = 30.6 (t), 31.1 (t), 31.2 (d), 31.7 (t), 32.4 (t), 34.4 (d), 36.3 (d), 41.4 (d), 70.2 (d). ~3C NMR 

ofexo-4 (CDCI3) 6 = 28.1 (t), 28.6 (d), 30.9 (t), 32.0 (t), 34.8 (d), 37.0 (d), 38.4 (t), 45.3 (d), 73.2 (d). 

(d) Spectroscopic data for 5: ~H NMR (CDCI3) 6 = 1.23 (d, J = 10.4 Hz, 1 H), 1.27 (d, J = 11.8 I-Iz, 

1 H), 1.48 (ddd, J = 11.3, 4.2, 3.7 Hz, 1 H), 1.59 (d, J = 12.5 Hz, 1 H), 1.74 (ddd, J = 12.5, 8.7, 5.6 Hz, 

1 H), 2.45-2.70 (m, 4 H), 3.00 (m, 1 H), 5.88 (dd, J = 8.8, 6.2 Hz, 1 H), 6.32 (dd, J =  8.4, 8.4 Hz, 1 H). 

13C N-MR (CDCI3): ~ = 34.3 (d), 35.9 (t, 2 C), 37.3 (d), 37.9 (d), 38.5 (d), 40.2 (t), 131.9 (d), 137.4 (d). 
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